Simple Axioms for Orthomodular Implication Algebras

Ivan Chajda,¹ Radomír Halaš,¹ and Helmut Länger^{2,3}

Simple, independent axioms for orthomodular implication algebras are presented.

KEY WORDS: implication algebra; orthoimplication algebra; orthomodular implication algebra; independent axioms; ortholattice.

1. INTRODUCTION

Abbott (1967) introduced implication algebras as groupoids (A, \cdot) satisfying

(I1) (xy)x = x, (I2) (xy)y = (yx)x, and (I3) x(yz) = y(xz).

These axioms reflect some important properties of implication in Boolean algebras. He further showed that there is a natural bijective correspondence between these groupoids and join semilattices with one every principal filter of which is a Boolean algebra. Abbott (1976) and Chajda, Halaš, and Länger (2001) generalized these ideas and results from Boolean algebras to orthomodular lattices. Abbott (1976) defined orthoimplication algebras as groupoids (A, \cdot) satisfying

(OI1) (xy)x = x, (OI2) (xy)y = (yx)x, and (OI3) x((yx)z) = xz.

Whereas Abbott (1976) assumed a natural compatibility condition between the complements in different principal filters to hold this was not done by Chajda, Halaš, and Länger (2001).

¹Department of Algebra and Geometry, Palacký University Olomouc, Olomouc, Czech Republic.

² Institut für Diskrete Mathematik Und Geometrie, Technische Universität Wien, Wien, Austria.

³To whom correspondence should be addressed; e-mail: h.laenger@tuwien.ac.at.

2. THE ORIGINAL AXIOM SYSTEM

Chajda, Halaš, and Länger (2001) defined orthomodular implication algebras as algebras (A, \cdot , 1) of type (2, 0) satisfying

(01) xx = 1, (02) x(yx) = 1, (03) (xy)x = x, (04) (xy)y = (yx)x, (05) (((xy)y)z)(xz) = 1, and (06) (((((((((xy)y)z)z)z)x)x)z)x)x = (((xy)y)z)z.

These axioms are not independent since (O2) follows from (O1), (O3), and (O5):

$$\begin{aligned} x(yx) &= ((xx)x)(yx) = (1x)(yx) = ((11)x)(yx) = ((((1y)1)1)x)(yx) \\ &= (((((yy)y)1)1)x)(yx) = (((y1)1)x)(yx) = 1 \end{aligned}$$

That xx = yy follows from (O3) and (O4) can be seen as follows: We have

we have

$$x(xy) = ((xy)x)(xy) = xy$$

and hence

$$xx = ((xy)x)x = (x(xy))(xy) = (xy)(xy)$$

from which we conclude

$$xx = (xy)(xy) = ((xy)y)((xy)y) = ((yx)x)((yx)x) = (yx)(yx) = yy$$

Since xx is an equational constant, (O1)–(O6) can be equivalently reformulated as axioms for groupoids. In this way, orthomodular implication algebras can be considered as groupoids satisfying

(O1')
$$x(yx) = xx$$
,
(O2') $(xy)x = x$,
(O3') $(xy)y = (yx)x$,
(O4') $(((xy)y)z)(xz) = xx$, and
(O5') $(((((((((xy)y)z)z)z)x)x)z)x)x = (((xy)y)z)z$.

As above, xx = yy follows from (O2') and (O3'). Also the axioms (O1')–(O5') turn out not to be independent since (O1') follows from (O2')–(O4'):

$$\begin{aligned} x(yx) &= ((xx)x)(yx) = (((yy)(yy))x)(yx) = (((((yy)y)(yy))(yy))x)(yx) \\ &= (((y(yy))(yy))x)(yx) = yy = xx \end{aligned}$$

3. THE NEW AXIOM SYSTEM

Now we state four simple axioms characterizing orthomodular implication algebras:

Theorem 3.1. The axiom system (O1')–(O5') is equivalent to the following system of axioms:

(O1") (xy)x = x, (O2") (xy)y = (yx)x, (O3") (((xy)y)z)(xz) = xx, and (O4") ((((((xy)y)z)x)x)z)x)x = (((xy)y)z)z.

Proof: If (O1')–(O5') hold then xx = yy follows as above and one obtains

$$((xy)y)y = (y(xy))(xy) = (yy)(xy) = ((xy)(xy))(xy) = xy$$

and hence

$$(((((((xy)y)z)x)x)z)x)x) = (((((((((xy)y)z)z)z)x)x)z)x)x) = (((xy)y)z)z)x$$

If, conversely, (O1'')–(O4'') hold then xx = yy, (O1') and ((xy)y)y = xy follows as above and

$$((((((((xy)y)z)z)z)x)x)z)x)x = (((((((xy)y)z)x)x)z)x)x = (((xy)y)z)z$$

4. INDEPENDENCE OF THE NEW AXIOMS

We now show that in contrast to the axioms (O1)–(O6) and (O1')–(O5'), respectively, the axioms (O1'')–(O4'') are independent:

Theorem 4.2. The axioms (O1")–(O4") are independent.

Proof: The groupoid ({1, 2}, ·) with xy = 1 for $x, y \in \{1, 2\}$ satisfies (O2")–(O4") but not (O1").

The groupoid ({1, 2}, ·) with xy = x for $x, y \in \{1, 2\}$ satisfies (O1"), (O3"), and (O4") but not (O2").

Let (P, \leq) denote the poset with the Hasse diagram

and for $x, y \in P$, let x + y denote the supremum of x and y if it exists and 1 otherwise. Then the groupoid (P, \cdot) where for $x, y \in P$, xy denotes the complement

of x + y in the Boolean algebra [y, 1] satisfies (O1"), (O2"), and (O4") but not (O3") since

$$(((ac)c)b)(ab) = ((1c)b)b = (cb)b = db = c \neq 1 = aa$$

That (P, \cdot) satisfies (O1''), (O2''), and (O4'') can be verified by using the fact that all principal filters of (P, \leq) are Boolean algebras. This means that the only nontrivial cases for the axioms to verify are those where both *a* and *b* occur.

Finally, let $(L, \lor, \land^i, \prime, 1)$ denote the ortholattice with the Hasse diagram

Then the groupoid (L, \cdot) where for $x, y \in L, xy$ denotes the complement of $x \lor y$ in the ortholattice [y, 1] satisfies (O1'')–(O3'') but not (O4'') since

$$((((((((ae')e')0)a)a)0)a)a = ((((((1e')0)a)a)0)a)a = (((((e'0)a)a)0)a)a = (((((e'0)a)a)0)a)a)a = ((((ea)a)0)a)a = ((((aa)0)a)a)a = (((10)a)a)a = ((0a)a = 1a = a \neq e' = e0 = (e'0)0 = (((1e')0)0 = (((ae')e')0)0)$$

That (L, \cdot) satisfies (O1'')–(O3'') can be verified by using the fact that all principal filters of (L, \leq) are ortholattices.

ACKNOWLEDGMENTS

This Research is supported by ÖAD, Cooperation between Austria and Czech Republic in Science and Technology, Grant no. 2003/1.

REFERENCES

Abbott, J. C. (1967). Semi-boolean algebra. *Matematički Vesnik* 4, 177–198.
Abbott, J. C. (1976). Orthoimplication algebras. *Studia Logica* 35, 173–177.
Chajda, I., Halaš, R., and Länger, H. (2001). Orthomodular implication algebras. *International Journal of Theoretical Physics* 40, 1875–1884.